Cookbook: crewAI Integration
This is a cookbook with examples of the Langfuse Integration for crewAI.
Note: crewAI is compatible with Python >=3.10, <=3.13.
Setup
!pip install crewai langfuse
Initialize the Langfuse client with your API keys from the project settings in the Langfuse UI and add them to your environment.
import os
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LANGFUSE_HOST"] = "https://cloud.langfuse.com" # for EU data region
# os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" # for US data region
os.environ["OPENAI_API_KEY"] = ""
from langfuse.openai import auth_check
# Tests the SDK connection with the server
auth_check()
Create Custom Tool
For more information on how to create custom tools for the crewAI framework, please visit the crewAI docs (opens in a new tab).
from crewai_tools import tool
@tool
def multiplication_tool(first_number: int, second_number: int) -> str:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
Assemble Crew
from crewai import Agent, Task, Process, Crew
writer = Agent(
role="Writer",
goal="You write lesssons of math for kids.",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[multiplication_tool],
)
task = Task(description=("What is {multiplication}?"), expected_output=("Write a haiku containing the solution"), agent=writer)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=True
)
Examples
Simple Example using observer() decorator
You can use this integration in combination with the observe()
decorator from the Langfuse Python SDK. Thereby, you can trace non-Langchain code, combine multiple Langchain invocations in a single trace, and use the full functionality of the Langfuse Python SDK.
Learn more about Langfuse Tracing here (opens in a new tab) and this functionality here (opens in a new tab).
from langfuse.decorators import observe, langfuse_context
@observe()
def create_haiku_simple(input):
result = crew.kickoff(inputs={"multiplication": input})
print(result)
create_haiku_simple("1 * 3")
Example using observer() decorator with custom tracing
from langfuse.decorators import langfuse_context
@observe()
def create_haiku_rich(input):
result = crew.kickoff(inputs={"multiplication": input})
langfuse_context.update_current_observation(
name="Crew AI Trace",
session_id="session_id",
user_id="user_id",
tags=["crew_ai", "haiku"],
output=result,
)
print(result)
create_haiku_rich("5 * 3")
Example using CallbackHandler()
from langchain_openai import ChatOpenAI
from langfuse.callback import CallbackHandler
from langfuse import Langfuse
langfuse_handler = CallbackHandler()
crew_with_langfuse = Crew(
agents=[writer],
tasks=[task],
manager_callbacks=[langfuse_handler],
)
res = crew_with_langfuse.kickoff(inputs={"multiplication": "3 * 3"})
print(res)