Guides
Cookbooks
Integration Crew Ai
This is a Jupyter notebook

Cookbook: crewAI Integration

This is a cookbook with examples of the Langfuse Integration for crewAI.

Note: crewAI is compatible with Python >=3.10, <=3.13.

Setup

!pip install crewai langfuse

Initialize the Langfuse client with your API keys from the project settings in the Langfuse UI and add them to your environment.

import os
 
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LANGFUSE_HOST"] = "https://cloud.langfuse.com" # for EU data region
# os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" # for US data region
 
os.environ["OPENAI_API_KEY"] = ""
from langfuse.openai import auth_check
 
# Tests the SDK connection with the server
auth_check()

Create Custom Tool

For more information on how to create custom tools for the crewAI framework, please visit the crewAI docs (opens in a new tab).

from crewai_tools import tool
 
@tool
def multiplication_tool(first_number: int, second_number: int) -> str:
    """Useful for when you need to multiply two numbers together."""
    return first_number * second_number

Assemble Crew

from crewai import Agent, Task, Process, Crew
 
writer = Agent(
        role="Writer",
        goal="You write lesssons of math for kids.",
        backstory="You're an expert in writing haikus but you know nothing of math.",
        tools=[multiplication_tool],
    )
 
task = Task(description=("What is {multiplication}?"), expected_output=("Write a haiku containing the solution"), agent=writer)
 
crew = Crew(
  agents=[writer],
  tasks=[task],
  share_crew=True
)
 

Examples

Simple Example using observer() decorator

You can use this integration in combination with the observe() decorator from the Langfuse Python SDK. Thereby, you can trace non-Langchain code, combine multiple Langchain invocations in a single trace, and use the full functionality of the Langfuse Python SDK.

Learn more about Langfuse Tracing here (opens in a new tab) and this functionality here (opens in a new tab).

from langfuse.decorators import observe, langfuse_context
 
@observe()
def create_haiku_simple(input):
    result = crew.kickoff(inputs={"multiplication": input})
    print(result)
 
create_haiku_simple("1 * 3")

Example using observer() decorator with custom tracing

from langfuse.decorators import langfuse_context
 
@observe()
def create_haiku_rich(input):
    result = crew.kickoff(inputs={"multiplication": input})
    langfuse_context.update_current_observation(
        name="Crew AI Trace",
        session_id="session_id",
        user_id="user_id",
        tags=["crew_ai", "haiku"],
        output=result,
    )
    print(result)
 
create_haiku_rich("5 * 3")

Example using CallbackHandler()

from langchain_openai import ChatOpenAI
from langfuse.callback import CallbackHandler
from langfuse import Langfuse
 
langfuse_handler = CallbackHandler()
 
crew_with_langfuse = Crew(
  agents=[writer],
  tasks=[task],
  manager_callbacks=[langfuse_handler],
)
res = crew_with_langfuse.kickoff(inputs={"multiplication": "3 * 3"})
print(res)

Was this page useful?

Questions? We're here to help

Subscribe to updates